Qual é o número de arestas de um poliedro convexo que tem 6 faces e 8 vértices?

Vamos observar uma propriedade nos poliedros convexos a seguir:

Cubo
Vértices: 8
Arestas: 12
Faces: 6

Somando o número de vértices com o número de faces, temos: 8 + 6 = 14. Observe o número de arestas. Guarde esses dois números!

Octaedro
Vértices: 6
Arestas: 12
Faces: 8

Fazendo a mesma conta com o octaedro: 6 + 8 = 14. Observe o número de arestas. Guarde esses dois números novamente!

Pirâmide quadrangular
Vértices: 5
Arestas: 8
Faces: 5

Na pirâmide, o mesmo: 5 + 5 = 10. E o número de arestas?

O que aconteceu em todos os casos?

O número de vértices, somado ao número de faces, é igual ao número de arestas mais 2!

Essa é a Relação de Euler para poliedros convexos:

Exercícios resolvidos usando a Relação de Euler

1) (FAAP - SP) Num poliedro convexo, o número de arestas excede o número de vértices em 6 unidades. Calcule o número de faces.

Resolução:

De acordo com o enunciado, temos:
A = V + 6

Usando a Relação de Euler e substituindo A de acordo com a igualdade acima:

V + F = 2 + A
V + F = 2 + V + 6

Eliminando V:

F = 8

O número de faces é igual a 8.

2) (Fatec - SP) Um poliedro convexo tem 3 faces com 4 lados, 2 faces com 3 lados e 4 faces com 5 lados. Qual é o número de vértices desse poliedro?

Resolução:

Do enunciado, sabemos que
Número de faces: 3 + 2 + 4 = 9

Número de arestas:
3 faces com 4 lados: 3 . 4 = 12
2 faces com 3 lados: 2 . 3 = 6
4 faces com 5 lados: 4 . 5 = 20
Somando: 12 + 6 + 20 = 38

Atenção: as faces são unidas, duas a duas, por uma aresta. Ao contarmos todas as arestas de todas as faces, cada aresta é contada duas vezes, uma para cada face "grudada" nela. Assim, esse número, na verdade, é o dobro do número real de arestas do poliedro. Logo:

A = 38 ÷ 2 = 19.

Usando, agora, a Relação de Euler, temos:

V + F = 2 + A
V + 9 = 2 + 19
V = 21 - 9 = 12.

A relação de Euler é uma fórmula matemática que relaciona os números de vértices, arestas e faces de um poliedro convexo. Essa relação é dada pela seguinte expressão:

V – A + F = 2

Onde V é o número de vértices, A é o número de arestas e F é o número de faces do poliedro.

Essa relação é válida para todo poliedro convexo, mas existem alguns poliedros não convexos para os quais ela também pode ser verificada. Dessa forma, dizemos que todo poliedro convexo é Euleriano (isso significa que para ele vale a relação de Euler), mas nem todo poliedro Euleriano é convexo.

Antes de prosseguir com exemplos e demais explicações, é bom relembrar o que é um poliedro convexo, pois a relação acima vale para todos eles.

Poliedros convexos

Um poliedro é chamado convexo quando o plano que contém cada face deixa todas as outras em um mesmo semiespaço. Na prática, não é necessário testar essa definição para todas as faces de um poliedro, mas apenas para aquelas que potencialmente possam classificá-lo como não convexo.

Por exemplo: O poliedro abaixo é não convexo. Para ter certeza disso, desenhamos uma parte de um plano que contém uma de suas faces. É evidente, escolhemos a face problemática para percebermos isso.

Já na figura abaixo, um cubo, um exemplo de um poliedro convexo. Note que ele não possui “concavidades”, ou seja, nenhuma de suas faces esta “voltada para dentro” do poliedro.

Contando os elementos de um poliedro

Não pare agora... Tem mais depois da publicidade ;)

Para verificar a validade da relação de Euler, escolheremos dois poliedros convexos e contaremos seus elementos. Depois disso, verificaremos se o número de vértices, arestas e faces realmente satisfazem a relação de Euler. Observe:

1 – Primeiramente, contaremos o número de faces, vértices e arestas da figura anterior (cubo).

Faces: 6

Arestas: 12

Vértices: 8

Agora, verificaremos a relação de Euler:

V – A + F = 8 – 12 + 6 = 14 – 12 = 2

Para o primeiro poliedro convexo, o cubo, a relação de Euler se verifica.

2 – Verificaremos agora a relação de Euler para a pirâmide quadrangular convexa.

Faces: 5

Arestas: 8

Vértices: 5

V – A + F = 5 – 8 + 5 = 10 – 8 = 2

E a relação de Euler também se verifica para a pirâmide quadrangular convexa.

Exemplos

1 – Determine o número de arestas de um sólido geométrico que possui 10 vértices e 7 faces.

V – A + F = 2

10 – A + 7 = 2

– A = 2 – 7 – 10

– A = – 15

A = 15

O sólido possui 15 arestas.

2 – Determine o número de faces que possui um poliedro com 12 arestas e 6 vértices.

V – A + F = 2

6 – 12 + F = 2

F = 2 +12 – 6

F = 8

O número de faces desse poliedro é 8.

Quantas arestas possui um poliedro convexo que possui 6 faces é 8 vértices?

Obter o número de arestas de um poliedro convexo que tem 6 faces e 8 vértices. Como a relação de Euler é válida para todos os poliedros convexos, temos: V + F –2 = A ⇒ A = 8 + 6 –2 ⇒ A = 12 Portanto, esse poliedro convexo tem 12 arestas.

Quantas arestas possui um poliedro convexo com 6 vértices é 6 faces?

4 arestas partindo de cada vértice. Logo, seriam 4 arestas vezes 6 vértices = 24 arestas.

Quantas faces tem um poliedro convexo com 6 vértices?

Determine o número de faces em um poliedro com 9 arestas e 6 vértices. Resposta correta: 5 faces.

Qual o número de arestas de um poliedro convexo?

Quando o poliedro é convexo, é possível utilizar a relação de Euler, que torna possível calcular a quantidade de vértices, arestas ou faces por meio da fórmula V + F = A + 2.

Toplist

Última postagem

Tag